Quantum computational complexity of the N-representability problem: QMA complete.

نویسندگان

  • Yi-Kai Liu
  • Matthias Christandl
  • F Verstraete
چکیده

We study the computational complexity of the N-representability problem in quantum chemistry. We show that this problem is quantum Merlin-Arthur complete, which is the quantum generalization of nondeterministic polynomial time complete. Our proof uses a simple mapping from spin systems to fermionic systems, as well as a convex optimization technique that reduces the problem of finding ground states to N representability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An exponential time upper bound for Quantum Merlin-Arthur games with unentangled provers

We prove a deterministic exponential time upper bound for Quantum Merlin-Arthur games with k unentangled provers. This is the first non-trivial upper bound of QMA(k) better than NEXP and can be considered an exponential improvement, unless EXP = NEXP. The key ideas of our proof are to use perturbation theory to reduce the QMA(2)-complete SEPARABLE SPARSE HAMILTONIAN problem to a variant of the ...

متن کامل

The Complexity of the Consistency and N -representability Problems for Quantum States

QMA (Quantum Merlin-Arthur) is the quantum analogue of the class NP. There are a few QMA-complete problems, most of which are variants of the “Local Hamiltonian” problem introduced by Kitaev. In this dissertation we show some new QMA-complete problems which are very different from those known previously, and have applications in quantum chemistry. The first one is “Consistency of Local Density ...

متن کامل

QMA-complete problems

In this paper we give an overview of the quantum computational complexity class QMA and a description of known QMA-complete problems to date . Such problems are believed to be difficult to solve, even with a quantum computer, but have the property that if a purported solution to the problem is given, a quantum computer would easily be able to verify whether it is correct. An attempt has been ma...

متن کامل

Testing Non-isometry Is QMA-Complete

Determining the worst-case uncertainty added by a quantum circuit is shown to be computationally intractable. This is the problem of detecting when a quantum channel implemented as a circuit is close to a linear isometry, and it is shown to be complete for the complexity class QMA of verifiable quantum computation. The main idea is to relate the problem of detecting when a channel is close to a...

متن کامل

Quantum Interactive Proofs and the Complexity of Separability Testing

We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof complexity class (including BQP, QMA, QMA(2), and QSZK), there corresponds a natural separability testing problem that is complete for that class....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 98 11  شماره 

صفحات  -

تاریخ انتشار 2007